
Mem. A multilingual package for LATEX with Aleph

Javier Bezos
Typesetter and consultant

http://perso-wanadoo.es/jbezos/

http://mem-latex.sourceforge.net/

jbezos@users.sourceforge.net

Abstract

Mem provides an experimental environment for multilingual and multiscript type-
setting with LATEX in the Aleph typesetting system. Aleph is Unicode-savvy and
combines features of Omega and eTEX. With Mem you should be able to typeset
Unicode documents mixing several languages and several scripts taking advantage
of its built-in OCP mechanism and with a high level interface.

Currently still under study and development, Mem is designed to be capable
of following the development of Omega and LATEX3, and I’m publishing it to
encourage other people to think about the ideas behind it and to discuss the
advantages and disadvantages of several approachs to the involved problems.

The project is now hosted in the public respository SourceForge.net to open
its development to other people.

Introduction

Until now, the only way to adapt LATEX for it to
become a multilingual system is babel; although an-
other systems like mlp (by Bernard Gaulle) or poly-

glot (by me) have appeared now and then, in prac-
tice only babel is used. It exploits TEX in order to
accomplish some tasks which TEX was not intended
for, like right to left writing and transliterations,
but it’s clear that the next step requires features
not available in TEX. Further, while one can write
documents in several languages, babel is esentially
a way to change the main language in monolingual
documents.

Long ago, Omega and ε-TEX developement
started independently and recently a new project
named Aleph, combining features from both sys-
tems, has been launched. There are several pack-
ages for specific languages taking advantage of the
features in Omega (devnag, makor, CJK, etc.) and
the package omega provided a few macros to ease its
use, now expanded with the name of Antomega by
Alexej Kryukov [5], but they don’t provide a generic
high level interface to add a language and to syn-
chronize it with other languages in a consistent and
flexible framework. On the other hand, LATEX3 con-
tinues evolving and one of its aims is to have built-in
multilingual capabilities.

It is in this context that Mem was born. Actu-
ally, it was born several years ago with the name of
Lambda and presented in the Fifth Symposium on

Multilingual Information Processing (Tokyo, 2001),
but for several reasons its development was paused.1

Its goal is twofold: in the short-term, to provide a
real working package for Aleph to become useable
with LATEX, taking advantage of features like the
OCP mechanism; in the mid-term, to use the expe-
rience gained with a real life system in order to de-
velop better multilingual environments with LATEX3
and Omega.

The rest of this paper of devoted to highlight
some of the issues and therefore it does not intend
to be exhaustive. To get a full picture of the pack-
age please refer to the manual [3], which is being
written at the same time as the package, because I
think the documentation is an integral part in the
development process. I’ve divided the topics in two
parts, those related directly to TEX, and those re-
lated to the Aleph/Omega extensions, particularly
to the OCP mechanism.

The TEX part

Organizing and selecting features Language
commands are grouped in components, with a few
predefined ones—namely, names, date, tools and
text. At first sight this resembles babel, but in fact
this similitude is only superficial, because you are
free to organize and to select components. The limit

1 There is no paper, but you can find the slides on http://

perso.wanadoo.es/jbezos/mlaleph.html. In fact, Mem was
born even before, in 1996, with the name of polyglot as I shall
explain shortly.

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting 1001

Javier Bezos

would be a component per macro but this does not
seem sensible; for example, left and right guillemets
could be a single group. On the other hand, too
many components would be unconvenient for the
user. I think a sort or component/subcomponent
model should be devised (eg, text.guillemets),
and at the time of this writing I’m working on a
system to allow even decisions at macro level like
text.guillemets.\lguillemet.

This poses the problem to determine which
components are active at a certain point of the doc-
ument. There are, of course, systems like those
in CSS and other formatting languages based on
description rules for transfomations based on con-
tent (for example, with the keywords inherit and
ignore). However, TEX allows programmable rules
for transformation based on format and such a
model seems very limited (and the term “inherit”
can be inappropiate in the context of an object-like
environment).2 Unlike CSS, with its closed set of
properties, TEX allows creating new properties and
therefore new ways to organize the document layout.

There is a proposal from Frank Mittelbach and
Chris Rowley [7] based on nesting levels, with com-
ments about the main issues to be addressed, but
since this paper is somewhat abstract regarding the
possible solutions it’s difficult to determine if that
model will be enough for many purposes. In par-
ticular, it presumes the structure of the document
is a tree, and therefore, as its authors point out,
the model has to be extended to provide the neces-
sary support of “special regions” that receive con-
tent from other parts of the document.

A basic idea in that paper is that there is a
base language for large portions of text as well as
embedded languages segments, which are nestable.
Although in a limited way, these concepts shown
at TUG 1997 related to a clear separation between
base and embedded languages were present at that
time in my own polyglot package (first released early
1997) whose code I used as the base to develop
Lambda and now Mem.

On the other hand, Plaice and Haralambous in
[9] and I (in Lambda) proposed independently to fol-
low a model based in context information; the ver-
sioning system for Omega described in the former
has been worked out and much extended from a the-
oretical point of view in [11] by Plaice, Haralambous
and Rowley, with the introduction of the concept of
a typographical space. Unfortunately, such a model
cannot be carried out in full with TEX and it has not

2 See [2]. An English summary is availaible on http://

mem-latex.sourceforge.net.

been implemented in Omega, but to me it’s clear it
should be taken as a guide for Mem, and for that
matter for any multilingual environment. At the
time of this writing I was studying how to tackle
this task and the resulting model will be left for a
future paper.

Never again default values! In a well-known ar-
ticle published in the TUGboat ten years ago, Hara-
lambous, Plaice and Braams proclaimed “Never
again active characters!” [4]. Now I proclaim
the end of another source of problems in the babel

package—namely, default values. Actually, default
values are mainly associated with active characters,
but they are also present in macros. Having default
values for a certain language is not a bad thing, but
when those values are restored every time the lan-
guage is selected and they cannot be redefined with
the standard LATEX procedures then problems arise.

In Mem, a default value in a language is only a
proposal, while the final decision is left to the user,
which can change it by means of \renewcommand,
\setlenght and similars. No special syntax is re-
quired, like for example \addto\extrasspanish.
The behaviour of language commands is exactly
that of normal commands, except that their values
change when the language changes.

A macro is made specific for a certain language
with \DeclareLanguageCommand, which provides a
default definition to be used if the users likes it;
if you don’t like it, you can redefine it, since the
default value is not remembered any more. Outside
that language, there could be macros with similar
names, but they are not language specific (except if
defined for another language, of course).

Furthermore, if a language defines an undefined
macro, this is only defined in the context of that
language and you not are required to provide a de-
fault for another language, because I firmly believe
loading a language should not change at all the be-
haviour of another language. In other words, with
Mem languages are much like black boxes.

A good example could be the Basque language,
which places the figure number before the figure
name. For that to be accomplished we must make
Basque dependent several internal macros. Consid-
ering the number of languages and the fact we can-
not know a priory which changes will be necessary,
the fact languages can (or even must) decide which
macros have a default value could lead to an unman-
ageable situation which could even prevent a proper
writing of packages, because we don’t know if we
need to use \(re)newcommand or something else.

1002 TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting

Mem. A multilingual package for LATEX with Aleph

The Aleph/Omega part

OTP files The OCP mechanism provides a pow-
erful tool to make a wide range of text transfor-
mations which are not possible with preprocessors.
Since OCPs perform transformations after expand-
ing macros, we can guarantee all characters, and
not only that directly “visible” in the document, are
taken into account. One of the main aims of Mem

is to develop a high level interface for them, because
using the Omega primitives is somewhat awkward.
Moreover, since OCPs must be grouped in OCP-lists
before actually applying them, the advantages of a
high level interface becomes aparent—OCP-lists are
hidden to users and language developers and they
are built and applied on the fly depending on the
language and the context, thus avoiding the dan-
ger of a combinatorial explosion [11, p. 107]. For
further details on how OCPs works, see the Omega
documentation [8] and the very useful case study
[10].3

A key concept in Mem is that of process, a
set of OCPs performing a single logical task. Very
often, a task cannot be carried out by just one
OCP, but in more complex cases a set of interre-
lated OCPs will be necessary. A very good example
of this is the devnag package for Omega by Yan-
nis Haralambous, where mapping from Unicode to
the target font requires three OCPs. At the time
of this writing I’m working on OCPs to handle the
Latin/Cyrillic/Greek family of scripts, which is be-
ing a lot more involved as one could think at first
sight, and very likely a set of three OCPs will be
necessary to carry out the single process of mapping
from Unicode to the T1, T2n and LGR encodings.4

This is particularly true for Greek with its many
possible ways to represent the many possible com-
binations of letters and accents, which is far from
trivial.5

3 Still, the former is very technical and the latter is very
basic, and unfortunately an “intermediate” manual explain-
ing the implications of OCPs is not available yet, thus mean-
ing developing OTPs must be done very often by trial and
error. The Aleph Task Force and I are considering the possi-
bility to write such a manual.

4 In addition, it should be investigated if several of the
tasks done by these OCPs can be delegated to a virtual font.

5 And the LGR encoding has some odd assignments, like
placing greek psili and oxia at "5E (^) thus having the cat-
code of superscript. There is another symbol mapped to the
backslash. That would not be important except for a long-
standing bug in how OCPs treat catcodes which the Aleph
Task Force is trying to fix, because it’s a critical one. Since
there are very few LGR fonts, and very likely their number
will not increase, I’m thinking about removing the support
for that encoding and instead to write a virtual file. To add
further confusion, the Omega standard font omlgc moves the
Unicode Greek Extended chars to a non standard placement.

It’s important to remember where OCPs are
not applied: when writing to a file (e.g., the aux file),
in \edef’s, in arguments of primitives like \accent,
and in math mode. The latter is a serious limi-
tation, and the Aleph Task Force is working on a
solution. This means Mem has done very little in
these areas, except redefining \DeclareMathSymbol

to allow higher values.

Extending OTP syntax: MTP files Perhaps
the main limitation of OTP files, containing the
source code of OCPs, is that the only letters we can
use are those in the ASCII range, while for the rest
of the Unicode range we must use numerical values.
MTP files have been devised to overcome these lim-
itations so that we can use Unicode names instead
of numbers (see figure 1). Currently, they are con-
verted to OCP with a little script named mtp2ocp,
a preprocessor written in Python.

Another addition to OTPs is that it maps spa-
cial characters to several points in the Private User
Area whose catcodes are fixed (as defined by the
Mem style file). This way, characters like \, {, $,
etc., have the expected behaviour even in verbatim
mode.

I hope MTP files could help in the near future to
make the task somewhat simpler, so suggestions are
most welcome. This way we can have prototypes to
experiment with, so that in the future otp2ocp itself
could be extended with new features if necessary.
(One of the reasons I use Python is that it’s a great
language for prototyping.)

Unicode as input encoding Unicode, unlike
many other encodings, clearly separates characters
and glyphs. This means that at character level, Uni-
code can introduce controls to provide further infor-
mation about these characters, including how they
should be rendered. It is expected that this infor-
mation has to be processed in order to decide which
glyph to use. Traditional font formats (TrueType
and PostScript) do not have this capability or it is
limited.

Unicode, considered as an input encoding, is
quite different from other encondings and poses sev-
eral challenges which must be taken into account if
we want to read properly Unicode text. Currently,
conversions done by LATEX packages or Omega OCPs
just ignore these controls and instead it is supposed
the user must supply them with TEX macros.

For example:6

• letters with diacriticals, either composed or de-
composed,

6 For some hints on that, see [13]

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting 1003

Javier Bezos

.......................

[LATIN CAPITAL LETTER L WITH STROKE] => <= @"8A ;

[LATIN SMALL LETTER L WITH STROKE] => <= @"AA ;

[LATIN CAPITAL LETTER N]{botaccent}<0,>[COMBINING ACUTE ACCENT]

=> <= @"8B \(*+1-1);

[LATIN SMALL LETTER N]{botaccent}<0,>[COMBINING ACUTE ACCENT]

=> <= @"AB \(*+1-1);

[LATIN CAPITAL LETTER N]{botaccent}<0,>[COMBINING CARON]

=> <= @"8C \(*+1-1);

[LATIN SMALL LETTER N]{botaccent}<0,>[COMBINING CARON]

.......................

[LATIN SMALL LETTER I WITH MACRON]

=> <= [LATIN SMALL LETTER I][COMBINING MACRON];

[LATIN CAPITAL LETTER I WITH BREVE]

=> <= [LATIN CAPITAL LETTER I][COMBINING BREVE];

......................

[CENT SIGN] => "\UseMemTextSymbol{TS1}{162}";

[POUND SIGN] => "\UseMemTextSymbol{TS1}{163}";

[CURRENCY SIGN] => "\UseMemTextSymbol{TS1}{164}";

[YEN SIGN] => "\UseMemTextSymbol{TS1}{165}";

......................

<acc> [COMBINING GRAVE ACCENT] => "\UseMemAccent{t}{0}";

<acc> [COMBINING ACUTE ACCENT] => "\UseMemAccent{t}{1}";

<acc> [COMBINING CIRCUMFLEX ACCENT] => "\UseMemAccent{t}{2}";

Figure 1: Several chunks from MTP files using Unicode names. Currently symbols are hardcoded, not an
ideal situation.

• ligatures marked with zero width joiner,7

• hyphens, non breaking hyphens, non breaking
spaces, etc.,

• fixed width spaces,

• variation selectors,

• byte order mark.

In order to unify the character encoding used
in style files, only utf-8 and explicit Unicode values
(eg, ^^^^0376) are used, but that poses the prob-
lem with a non-Unicode document since changing
the OCP for the input encoding would mean kern-
ing and ligatures are killed. To overcome this well
known TEX limitation, input OCPs use an internal
switch mechanim to escape temporarily to utf-8 or
utf-16 (see figure 2). The trick is to pass information
to the OCP with the character ^^1b, whose mean-
ing in many character encodings is ESCAPE, followed
by another character with the operation to be per-
formed. I’m not sure if this mechanims is robust
enough, but if it were the idea could in the future
serve as a way to pass context information to a cer-
tain OCP so that its behaviour may be changed,
although of course a built-in mechanism as that pro-
posed by John Plaice et al. [11] would be preferable.

7 The semantics of this character has been extended in
Unicode 4.0 and now can be used to mark ligatures [12, p.
389ss]

f\unitext{^^^^0069}

fi fi

\unitext{^^^^0066}i

Figure 2: Entering a Unicode character with
Mem does not break ligatures.

LATEX Internal representation This section is
devoted in part to a few ideas which I put forward
in the LATEX3 list, which was followed by a very
long discussion about a multilingual model (or more
exactly, multiscript) for LATEX. These ideas lead to
introduce the concept of LICR (LATEX internal char-
acter representacion). Actually, LATEX has for a long
time had a rigorous concept of a LATEX internal rep-
resentation but it was only at this stage that it got
publicly named as such and its importance realised.8

The reader can find more on LICR in the second edi-
tion of The LATEX Companion, by Frank Mittelbach
and others [6, section 7.11.2].

What LICR does is essentially to ensure there
is only a way to represent a certain character so that

8 Chris Rowley, “Re(2): [Omega] Three threads”, e-mail
to the Omega list, 2002/11/04.

1004 TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting

Mem. A multilingual package for LATEX with Aleph

different input methods (say, á and \’{a}) lead to
the same representation (in that case \’a) and that
this representation is able to find a correct glyph
somehow.9 The required funtionality for that to be
accomplished is splitted in two well know packages—
namely, inputenc and fontenc.

As far as I know, no paper explaining the tech-
nical details of the LICR has been published, so I’m
going to attempt an operational definition. Before
doing that, I think remembering different kinds of
TEX expansion process is to the point (I exclude one
level expansion as done by \expandafter):

• \def no expansion.

• \edef expands anything except non expandable
tokens.

• protected \edef expands anything except non
expandable tokens and protected tokens (even
if expandable).

• execution expands anything and performs the
actions of primitives.

So, we can say LICR is what we get in a protected
expansion.

Unicode provides this kind of “internal repre-
sentation” but without the normalization of LICR.
Let’s remember Unicode allows representing char-
acters with diacritics in composed form (eg, ä) or
in decomposed form (eg, a¨), and that these forms
may be normalized to either composed or decom-
posed forms. There are three possibilities:

• normalizing to composed forms.

• normalizing to decomposed forms.

• not normalizing at all.

Decomposition has, in turn, several types, but we
won’t discuss them in this paper.

The questions here are: Is it possible the pre-
serve the LICR in Mem?; if so, must be the LICR
preserved in Mem? Does it fit in the Unicode model?

In order to answer these questions, we must re-
member the LICR relies heavily in active charac-
ters, which will be replaced in Mem by OCPs. Fur-
thermore, macros are expanded and executed (see
above) before OCPs are aplied thus making impos-
sible any attempt to catch things like \’a. It seems
that an alternative method to inputenc/fontenc
must be provided.

Once we have an expanded string, characters
are normalized to decomposed characters instead of
the composed form favoured by the Web Consor-
tium, for example (it should be noted that in the
LICR letters are decomposed). The reasons are

9 Note the LICR is not necessarily a valid input method,
because \’a is not always correct in LATEX.

\u{ȩ}

ḝ \u{\c{e}}

\c{ĕ}

Figure 3: Several ways to input the same
character. With Mem the four are strictly
equivalent, because they are converted to Unicode
and normalized. With the NFSS, if ȩ does not
exist, then the ˘ is always faked. However, with
Mem, if ȩ does not exists but ĕ does, then¸is
added to the real composite character.

mainly practical, because the composed form to be
selected in some cases depends on the glyphs avail-
able. Since normalizing to composed forms would
require decomposing, sorting diacriticals and then
composing, and font processes would require decom-
posing again and sorting again to see if there are
matching glyphs for the first accent above or the first
accent below (or even a combination of both), by us-
ing directly the decomposed form we are avoiding a
lot of overhead (see figure 3). In fact, the Unicode
book says [12, p. 115]:

In systems that can handle nonspacing
marks, it may be useful to normalize so as
to eliminate precomposed characters. This
approach allows such systems to have a ho-
mogeneous representation of composed char-
acters and maintain a consistent treatment of
such characters.

This dual representation of characters is what is
making processes for the Latin/Cyrillic/Greek script
so complex, but we have to deal with them if we
want a Unicode typesetting engine.

The Latin script has a rich typographical his-
tory, which not always can be reduced to the dual
system character/glyph. As Jaques André has
pointed out, “Glyphs or not, characters or not, types
belong to a class that is not recognized as such” [1].
Being a typesetting system, neither Aleph nor Mem

can ignore this reality, and therefore we will take
into account projects like the Medieval Unicode Font
Initiative (MUFI)10 or the Cassetin Project. How-
ever, it doesn’t mean a Unicode mechanism will be
rejected when available. For example, ligatures can
be created with the zero width joiner. If there

10 http://www.hit.uib.no/mufi/

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting 1005

Javier Bezos

is a certain method to carry out a certain task in
Unicode, it will be emulated.

Diacritical marks The Unicode 4.0 book states
[12, p. 184] when discussing spacing modifier letters:

A number of the spacing forms are covered
in the Basic Latin and Latin-1 Supplement
blocks. The six common European diacritics
that do not have encodings there are added
as spacing characters.

In other words, except for these six diacrit-
ics (U+02D8-U+02DD), the spacing forms of com-
bining characters are those in the range U+0000-
U+00FF. Unfortunately, it happens this is not true,
since the spacing caron accent (U+02C7) is not
encoded in these blocks. Further, one of these
six diacritics encoded separately—namely, the tilde
U+02DC—does exist in these blocks (U+007E).

What to do, then? One will be forced to find
some kind of hint, and one can do it readily—all
characters in the block Spacing Modifier Letters
are prefixed with modifier letter, except the six
spacing clones and caron (U+02C7). From this,
we can infere that the right spacing form for the
circumflex accent is not the modifier letter vari-
ant, but the one in the Basic Latin Block, exactly
like the acute accent. No doubt the “small” tilde
has been encoded separately because the ASCII tilde
has already a special meaning in several OS’s.

Still, I think there is a better solution, or rather
a better encoding which does not pose this problem.
Since the glyphs for diacritics are mainly intended
for use with the \accent primitive, one can conclude
they are, after all, combining characters. The fact
we need further processing with TEX does not pre-
vent considering these glyphs conceptually as non-
spacing characters—this is just the way TEX works.
Since composing diacritical marks are encoded anew
in Unicode, we don’t need to be concerned with
legacy encodings and their inconsistencies.

Conclusions

In this paper I have scratched only the surface of
some topics, which deserve by themselves a whole
paper. In addition, many others have not been even
treated like for example:

• Hyphenation, including patterns for Unicode-
like fonts.

• Automatic selection of languages and fonts de-
pending on the current script.

• Since letters are not active any more, one should
be allowed to write \capı́tulo or \κǫφάλαιo

instead of \chapter.

• Fonts—monolythic or modular?

• OpenType—must its information be extracted
so that it’s under our control? (However, using
OpenType fonts with TEX is still a failed sub-
ject, although there are interesting projects like
XeTEX.11)

Before finishing this paper, I would like to cite
Frank Mittelbach in a message posted to the LATEX3
list:

The fact that we don’t agree with some points
in it only means that the processes are so
complicated that we haven’t yet understood
them properly and so need to work further
on them.

I hope Mem will provide an environment which
would help us (including me) to understand better
how OCPs work as well the issues a multilingual
system poses.

References

[1] André, Jacques: “The Cassetin Project – To-
wards an Inventory of Ancient Types amd the
Related Standardized Encoding”, Proceedings

of the Fourteenth EuroTEX Conference, Brest
(France), 2003.

[2] Bezos, Javier: “De XML a PDF, tipograf́ıa
con TEX”, Proceeding of the IV Jornadas de

Bibliotecas Digitales, Alicante, Spain, 2003 [in
Spanish].

[3] Bezos, Javier: “Mem: A multilingual envi-
ronment for Lamed/Lambda”, 2004, CTAN:

macros/latex/exptl/mem/mem.pdf

[4] Haralambous, Yannis, John Plaice and Jo-
hannes Braams: “Never again active charac-
ters! Ω-Babel”, TUGboat, Volume 16 (1995),
No. 4.

[5] Kryukov, Alexej: Typesetting Multilingual doc-

uments with Antomega, 2003, TeXLive2003:

texmf/doc/omega/antomega/antomega.pdf.

[6] Mittelbach, Frank, and Michel Goossens: The

LATEX Companion, Addison-Wesley, 2nd ed.,
2004.

[7] Mittelbach, Frank, and Chris Rowley: “Lan-
guage Information in Structured Documents:
A Model for Mark-up and Rendering”,
http://www.latex-project.org/papers/

language-tug97-paper-revised.pdf.

[8] Plaice, John, and Yannis Haralambous:
“Draft documentation for the Ω system”,
2000, TeXLive2003:/texmf/doc/omega/base/
doc1-12.ps.

11 http://scripts.sil.org/cms/scripts/page.php

?site id=nrsi&item id=XeTeX& sc=1

1006 TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting

Mem. A multilingual package for LATEX with Aleph

[9] Plaice, John, and Yannis Haralambous: “Sup-
porting multidimensional documents with
Omega”, Fifth International Symposium on
Multilingual Information Processing, Tokyo,
Japan, 2001, http://omega.enstb.org/

papers/dimensions.pdf.

[10] Plaice, John, and Yannis Haralambous: “Mul-
tilingual typesetting with Ω, a Case Study:
Arabic”, TeXLive:/texmf/doc/omega/base/

torture.ps.

[11] Plaice, John, et al.: “A multidimensional ap-
proach to typesetting”, TUGboat, Volume 24
(2003), No. 1.

[12] The Unicode Consortium: The Unicode Stan-

dard, Version 4, Addison-Wesley, 2003.

[13] The Unicode Consortium: Unicode in XML

and other Markup Languages, Unicode Techni-
cal Report #20, W3C Note 13 June 2003.

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting 1007

